Об особенностях развития вынужденной эластической деформации при растяжении стеклообразного полиэтилентерефталата в адсорбционно-активной среде - Учим химию

Опубликовано: 04.09.2018

Способность полимеров к вынужденной эластической деформации является их фундаментальным свойством и лежит в основе важнейшего технологического приема, используемого при изготовлении пленок и волокон,— ориентационной вытяжки. В связи с этим холодная вытяжка полимеров служила предметом многочисленных исследований, и в настоящее время она хорошо описана и изучена [1, 2]. Тем не менее, некоторые аспекты этого явления до сих пор остаются неясными, и в первую очередь это касается взаимосвязи между характером кривой растяжения полимера и его структурными перестройками, происходящими в процессе деформирования.

Еще в меньшей степени изучено влияние жидких сред на процесс развития неупругой деформации полимера. В последние годы было установлено, что холодная вытяжка полимеров в жидких адсорбционно-активных средах в структурном плане резко отличается от холодной вытяжки полимера на воздухе [3]. Это отличие легко наблюдать даже визуально. Вместо хорошо известного явления возникновения и распространения по образцу шейки, в адсорбционно-активной среде на первых этапах деформирования не происходит заметного сужения образца, а переход полимера в ориентированное состояние осуществляется внутри большого количества специфических микротрещин, покрывающих всю рабочую часть образца [4].

Особенности зарождения и роста таких микротрещин в этом случае определяют механическое поведение полимера в целом. Значительное число исследований посвящено вопросам возникновения и роста микротрещин, однако лишь в некоторых работах [5—9] сделаны попытки найти взаимосвязь между особенностями роста микротрещин и механическим поведением полимера.

В данной работе приведены результаты исследования процессов возникновения и роста микротрещин при деформировании ПЭТФ в адсорбционно-активной среде с использованием прямых методов исследования — кино- и фотосъемки и сопоставлены полученные данные с макроскопическими механическими свойствами полимера в тех же условиях.

Впервые мысль о взаимосвязи кривой растяжения полимеров с его макроскопическими структурными перестройками была высказана в работах Лазуркина [1]. Визуальные наблюдения образования и роста шейки в полимерах позволили заключить, что «в области спада напряжения происходит формирование шейки. Сечение ее уменьшается, за счет этого возрастает длина. К концу спада напряжения формирование шейки заканчивается и начинается ее рост в длину за счет соседних, мало продеформированных частей образца» [1]. Другими словами, на первом этапе растяжения полимера (в интервале деформаций от предела вынужденной эластичности до выхода кривой растяжения на плато) происходит формирование сравнительно узкой зоны пластически деформированного полимера и ее прорастание через все поперечное сечение испытываемого образца. Дальнейшая деформация осуществляется путем распространения сформировавшейся узкой зоны, называемой шейкой, на всю рабочую часть образца. Как видно, уже в работах Лазуркина имелась возможность изучать скорость распространения зоны пластической деформации полимера, используя кривые растяжения.

Позднее было установлено, что процесс холодной вытяжки полимера в адсорбционно-активной среде, несмотря на отмеченные выше отличия, имеет много общего с хорошо изученным процессом деформации полимера на воздухе [9]. Хотя при растяжении полимера в адсорбционно-активной среде не происходит образования монолитной шейки, пластическая деформация полимера на первых этапах растяжения осуществляется в области вершин специфических микротрещин, прорастающих (так же, как и шейка) через поперечное сечение деформируемого полимера. Такая аналогия позволила определить скорость роста микротрещин или, что то же, скорость распространения зоны пластической деформации в полимере при его растяжении в адсорбционно-активной среде. Действительно, поскольку к моменту выхода динамометрической кривой в область стационарного напряжения большая часть микротрещин успевает прорасти через все поперечное сечение образца, то, фиксируя время выхода динамометрической кривой на плато и зная размеры образца, можно определить некоторую скорость роста микротрещин. Было показано, что скорость роста микротрещин зависит от вязкости и поверхностной активности жидкой среды, а также определяется условиями нагружения полимера [12].

Страницы: 1   2 3 4
rss